
1

Beyond Binary Understanding: LLMs as

Catalysts for Philosophical Recalibration
Micah Probst

Abstract

The notion of ”understanding” faces a profound recalibration challenge with the emergence of Large

Language Models (LLMs). Often dismissed in popular discourse as mere pattern-matching machines—”stochastic

parrots” or ”semantic zombies”—these systems demand deeper philosophical examination as they demon-

strate increasingly sophisticated linguistic capabilities. This paper challenges traditional binary concep-

tions of understanding by examining LLMs through four influential philosophical frameworks: Turing’s

behaviorism, Searle’s biological naturalism, Grice’s communicative intentions, and Wittgenstein’s language

games. Drawing on recent mechanistic interpretability research, I demonstrate how LLMs possess neither

mere statistical mimicry nor human-equivalent comprehension, but rather exhibit mechanically different yet

analogous forms of semantic understanding and intentionality when viewed along multiple dimensions. The

evidence suggests our philosophical frameworks require fundamental recalibration to accommodate non-

anthropocentric cognitive architectures. While LLMs currently lack generalized intelligence and genuine

agency, their unique capabilities as linguistic agents compel us to develop more nuanced theories of

understanding—theories that recognize the possibility of multiple valid forms of semantic competence

beyond the human paradigm. This philosophical reframing is essential as we navigate a future increasingly

populated by sophisticated artificial linguistic agents.

I. INTRODUCTION

Recent developments in generative AI—for this paper I will be concerned with Large Language

Models (LLMs)—have introduced a new set of questions to consider in our attempts to define what

it means for something to have “understanding.” Commonly considered as mere pattern-matchers,

LLMs have been denigrated to the positions of “stochastic parrot” [1] or “semantic zombie” in

the eyes of some researchers and common folk alike. However, as these models demonstrate in-

creasingly sophisticated linguistic capabilities, such characterizations demand deeper examination
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and consideration. This paper is intended to explore a central question that constitutes what we

call LLMs: What is the nature of LLMs as linguistic agents?

This broad inquiry encompasses several importantly interconnected sub-questions: Do LLMs

have semantic understanding? Do LLMs have conceptual understanding of universals? What kind

of linguistic—or other kinds of—behavior do LLMs possess? Are LLMs legitimate participants in

language games? And what significance does it carry that LLMs’ language processing mechanisms

differ from our own? The answers we give to these questions carry significant implications

across multiple domains. Philosophically, if LLMs genuinely understand language, our theories

of language and mind may require substantial revision. From a cognitive science perspective,

LLMs or other models that achieve genuine understanding would drive us to reshape our existing

view and make new hypotheses about the human brain’s mechanisms for understanding. Ethically,

entities with real understanding may demand different considerations than mere tools. Socially,

how we interact with and deploy these systems crucially depends on what their status as linguistic

agents is.

Given the broad and contested nature of our definitions of “understanding,” I will here clarify

that in this paper I seek to examine LLMs for semantic understanding—knowledge of word

meanings and representing associated concepts—and conceptual understanding—representing and

applying meta-linguistic universal concepts. Furthermore, rather than treating understanding as a

binary quality, I adopt the view suggested by Lyre [2] that understanding exists on a spectrum with

multiple dimensions of grounding1. This approach helps cut the proverbial fat of understanding

by making it more quantifiable as a sum of specific abilities. Additionally, it leaves room for a

non-anthropocentric view of understanding which can be applied to humans and LLMs alike.2

The paper proceeds as follows: First, I examine four pertinent theoretical frameworks from

machine learning and philosophy of language—Turing’s behavioral approach [3], Searle’s Chinese

1“Grounding” refers to how abstract concepts connect to physical reality, experiences, or other established meanings. Human
understanding is typically grounded through direct sensory experience (seeing actual dogs), social interaction (learning from others
about dogs), or connections to other already-grounded concepts.

2The spectrum approach to understanding requires specific criteria for what constitutes advancement along different dimensions.
These dimensions might include: (1) causal grounding in the world, from none to direct sensorimotor experience; (2) capacity
for abstraction, from surface pattern matching to hierarchical concept formation; (3) contextual flexibility, from rigid application
to adaptive context-sensitivity; (4) metacognitive awareness, from none to sophisticated self-monitoring; and (5) integration across
domains, from isolated competencies to unified understanding. These dimensions must be specified with measurable criteria to avoid
the spectrum becoming merely a rhetorical device that sidesteps binary questions through continuous terminology. Different cognitive
architectures likely excel at different dimensions rather than simply advancing linearly along a single spectrum.
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Room Arguments [4], Grice’s theory of communicative intention [5], and Wittgenstein’s language

games [6]. Each section is meant as a presentation of the author’s original position and a

reconstruction of their arguments and assumptions to lay the groundwork for later critique

and discussion. Next, I provide a high-level overview of the technical background required to

understand transformer-based LLMs, explaining key components such as attention heads, multi-

layer perceptrons, and the residual stream. The heart of this paper follows in four “beyond”

sections, where I systematically evaluate how recent mechanistic interpretability findings from

Anthropic [7]–[12] and philosophical analysis from Boisseau [13], Attah [14], and Lyre [2]

challenge or support the aforementioned classical frameworks. The paper concludes with a

discussion of the findings in aggregate and considerations of future directions and implications

for AI development. The arguments made throughout this paper lead me to support the stance

that LLMs have strong mechanistically different, yet analogous kinds of semantic understanding,

conceptual understanding, and intentionality when viewed as degrees, but do not currently possess

generalized intelligence or agency.3

II. CLASSIC FRAMEWORKS

For fields as complex and multidisciplinary as AI and machine learning, the clearest pictures

are the product of more varied analysis. This motivation is the reasoning behind the order in

which I develop the ideas in this paper. While, in the end, the answers I seek may reside in

the technical results and literature, supplementing and framing the technical discussion with

theoretical frameworks allows us to gain new insights and deeper comprehension. Hence, we

begin with the two most prominent and withstanding theoretical frameworks in machine learning

and follow them with what I have identified as the two most challenging theories of language

for LLMs to contend with.
3Agency refers to the capacity to act independently, make choices, and pursue goals—fundamentally different from understanding,

which involves grasping meaning and concepts. This distinction explains why an entity might understand language without having
meaningful agency or have agency without understanding. Full artificial general intelligence would require both capacities, but they
can develop independently and through different mechanisms.
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A. Turing

Alan Turing’s seminal 1950 paper “Computing Machinery and Intelligence” sought a task

very similar to the present paper, to take a vague question, “Can machines think?” and offer

a reframing that could have a measurable answer. The product of this reframing, the Imitation

Game, is now known as the Turing test and offers a behavioral approach to the question of

machine intelligence [3]. The test took a human judge and put them in an experiment setting

with two hidden participants—a human and a computer. If after a brief text-based conversation

the judge cannot ascertain with a specific degree of accuracy4 which participant is which, the

machine passes the test and earns the badge of intelligence. This behavioral approach shifted away

from definitional problems regarding “thinking” toward observable capabilities, establishing an

influential paradigm in the evaluation of AI models.5 Turing’s reframing of the initial question

in this way is on account of his belief that “thinking” was traditionally defined too ambiguously

for empirical investigation and was therefore meaningless to discuss [3].

The remarkable mind he was, Turing seemed to anticipate a great deal of objections to his

argument as well as trends in the future of the field of machine learning. Of the nine objections

in the original paper, I want to highlight two:

• The “Argument from Consciousness” claimed that machines cannot have consciousness or

feelings by virtue of their nature as artificial [3]. This seemingly innate intuition has persisted

in the 75 years since it was originally formalized by Turing and his response to the objection

endures just as well. Turing observed that the “Argument from Consciousness” leads to a

“problem of other minds” and would necessarily result in solipsism if applied consistently.

• “Lady Lovelace’s Objection” argues that computers are only capable of performing what

they are programmed to do [3]. Turing’s response to this set the conceptual groundwork

for the field of machine learning. He argued that a machine’s behavior could surprise its

programmer through learning rather than explicit programming. Many decades later, this has

become the paradigm of AI models for which we now experience a kind of “black box”

4I have omitted the exact duration and accuracy numbers on account that they have been changed throughout the years and do not
meaningfully contribute to the theoretical analysis at hand.

5This trend manifests currently in the endless array of benchmarks new models are scored upon.
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problem of behaviors we cannot easily interpret or predict.

Further anticipating the field of machine learning, Turing posited the idea of a “child machine”

[3]. This approach—rather than attempting to produce a program that simulates an adult mind,

produces one which simulates a child’s mind and its ability to learn, resulting in an adult mind

when appropriately trained—has become the foundation of neural networks and their learning

algorithms.

As an optimist about the idea of machine intelligence and a critic of granting humans excep-

tional status when it comes to intelligence and consciousness, Turing not only anticipates many

current research directions, but laid the groundwork for a functionalist view that intelligence could

be meaningfully defined through behavior rather than internal mechanisms. However, as we will

discuss later, concerns about safety have led to a practical and conceptual return to attempts of

understanding the internal mechanisms of AI models.

B. Searle

In his influential 1980 paper “Minds Brains and Programs,” John Searle introduced the Chinese

Room Argument (CRA) to challenge what he termed “strong AI”—the claim that appropriately

programmed computers possess genuine cognitive states and understand language [4]. The CRA

imagines a man locked in a room where he is fed pages with Chinese characters he does not know

(inputs) and then uses a rulebook (program) to match the characters to new characters which he

offers to researchers outside the room (outputs). When interacting from the outside, a Chinese

speaker has the experience of corresponding with the room in a way that is indistinguishable

from how a native speaker would answer. Yet, the man in the room is merely following symbol

manipulations and does not understand any Chinese.

Searle’s CRA can be seen as an objection to Turing’s behavioral approach. The goal is to

show that even if a program produces outputs indistinguishable from those of a native Chinese

speaker, the program itself does not understand Chinese. Furthermore, Searle shifts the goalpost

from “understanding” to “intentionality” as the meaningful quality that precludes the existence

of strong AI. The story develops as follows:

1) Syntax and semantics are fundamentally different and computers can only contain syntax.
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2) Understanding requires grasping semantic content.

3) Intentionality6—the capacity for mental states to be about or directed at objects and states

of affairs—requires understanding [4].

4) Genuine cognitive states such as beliefs, thoughts, and desires necessarily have intentional

content.

5) Therefore, the claim of strong AI is false.

If semantics, which functions as the base for the rest of the developed powers, is not a

product of computation, where does it plant its feet? Searle offers the answer of biological causal

powers.7 These causal powers, he argues, emerge from the biochemistry of the brain and cannot

be duplicated by formal programs run on other physical substrates. He likens intentionality to

being a biological phenomenon as causally dependent on its originating biochemistry as lactation

or photosynthesis [4].

Searle can be seen to represent a more pessimistic outlook on machine learning that denigrates

them to tools of symbol manipulation. His CRA works as a rejection of behavioral analysis of

intelligence and relocates the locus of understanding in a kind of biological naturalism.

C. Grice

A precursor to Searle, H.P. Grice put forth a then novel account of meaningful communication

in his 1957 paper “Meaning” [5]. Breaking from the history of anchoring meaning to convention,

reference, or truth conditions, Grice—as Searle later does—places meaning in intentions and

cognitive states. An important consequence of this definition is that every agent wishing to

participate in meaningful communication must possess intentions and cognitive states.

The formal construction of Grice’s theory relies on a distinction between what he names natural

and non-natural meaning. Natural meaning occurs when “x means y” entails the factual truth of

6Searle’s argument hinges on a crucial distinction between ”intrinsic” intentionality (mental states that are inherently about
something) and ”as-if” or ”derived” intentionality (states that appear intentional only from an observer’s perspective). For Searle,
computers—including LLMs—can only have derived intentionality attributed to them by human interpreters, while brains have
intrinsic intentionality. This distinction challenges attributions of genuine understanding to LLMs even when they exhibit behavior
functionally indistinguishable from human understanding. The circularity concern here is that evidence for intrinsic intentionality
may ultimately rely on external behavior.

7Also known as biological naturalism. This idea posits consciousness and intentionality as biological phenomena emerging from
brain processes. Unlike both dualism and computational theories of mind, it maintains that mental states are both causally reducible
to neurobiological processes and ontologically irreducible as first-person experiences. This position allows Searle to acknowledge the
physical basis of mind while rejecting functionalism’s claim that mental states are merely functional roles.
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y—for example, “Those spots mean measles” indicates that measles are necessarily present [5].

In contrast, non-natural meaning does not entail such factual truth—for example, “Those three

rings on the bell mean the bus is full” could be false if the bell is rung in an inappropriate

circumstance [5]. Grice uses this separation of causal indication and intentional significance to

develop his analysis of speaker meaning. He offers the following formulation to answer the

question of what it means for a speaker S to mean something by an utterance x: “S intended

the utterance of x to produce some effect in an audience by means of the recognition of this

intention” [5].

This analysis identifies three nested levels of intention crucial to communicative meaning:

1) The intention to produce a certain response in an audience.

2) The intention that the audience recognize the speaker’s intention.

3) The intention that this recognition play a causal role in producing the intended response.

What distinguishes the communicative intention theory from mere manipulation is its self-

referential structure. The speaker must not only intend to produce an effect, but that the effect

is produced by the audience’s recognition of that intention. Grice’s grounding of meaning in the

communicative intentions and recognitions of both interlocutors sets the stage for many interesting

challenges for LLMs to confront.

D. Wittgenstein

Ludwig Wittgenstein’s later philosophy, namely his famous “Philosophical Investigations” (1953),

represents one of the most radical theories of language and meaning in the tradition [6]. In the

investigations, he rejects both his own earlier picture theory of language from the Tractatus and

other referential theories, Wittgenstein introduces “language games”8 as a novel framework for

understanding linguistic meaning. The language game approach suggests that words derive their

meaning from their use within diverse rule-governed social practices. He illustrates this through

numerous examples: giving orders, describing objects, reporting events, forming hypotheses,

telling stories, joking, greeting, praying—each representing a different “game” with its own

implicit rules [6].
8“Sprachspiele” in the original German.
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Wittgenstein demonstrates how meaning emerges through practical activity rather than mental

representation through cases like his builder example (§2) where one worker calls out words like

“slab” or “block” and another responds with appropriate actions involving the objects [6]. The

plurality of language games replaces the search for a unified essence of language while paying

attention to the “family resemblances” between diverse linguistic practices.

The agent who participates in language games must be trained rather than merely instructed—

understanding, for Wittgenstein, is not about grasping an interpretation but about exhibiting

practical mastery in actions. This grounding in actions implies that participating agents ought to be

embodied and social beings by nature who engage in shared practices. Furthermore, Wittgenstein

argues that no rule can determine its own application and that any formulation can be interpreted

in many ways.9 Rules become fixed by the agreement conferred upon them through practice within

a community. This eliminates the validity of private languages having meaning on the grounds

that an agent with a genuinely private language would have no stable standard to distinguish

between following a rule correctly and merely thinking they were doing so [6].

This view of language and meaning presents the most significant challenge for LLMs. Wittgen-

stein’s emphasis on embodied practice and communal agreement suggests that language use is

inextricably linked to human10 ways of being in the world. Unlike Turing’s behavioral approach,

which focuses on the outputs alone, Wittgenstein suggests that understanding language requires

participation in shared forms of life—raising questions about whether a disembodied system

can participate in language games. Furthermore, unlike Searle’s focus on internal mechanisms,

Wittgenstein locates meaning not exclusively in the mind of the agent but in the normative

practices of a linguistic community. This framework presents a unique perspective to evaluate

whether LLMs are agents of simulacra or participation in language games.

9Wittgenstein’s rule-following paradox presents a particularly challenging objection to LLMs as genuine language users. The
paradox demonstrates that any finite set of examples is compatible with infinitely many different rules, and no rule can determine its
own application. Wittgenstein resolves this through appeal to normative practices within a community, where correct rule-following
is determined by agreement in judgment, which presents an immediate challenge for LLMs.

10Or other animals capable of sufficient cognitive abilities to construct language games.
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III. TECHNICAL REVIEWS

A. Transformer Architecture

Now that we have established the theoretical frameworks we want to evaluate LLMs under,

we turn to the technical foundations of transformers. Transformers are a kind of neural network

architecture—which LLMs are a product of—derive their name from their mechanism. That

is, at a very high level, they perform a series of transformations on vectors—which are how

information is embedded into the system—which create an output vector that is turned into a

probability distribution of the proper next token.11 Modern LLMs originate from the famous

2017 paper “Attention Is All You Need” [15]. The revolutionary idea presented in the paper

that set forth a new AI spring was the ability to process data in parallel. This had the effect

of eliminating computational bottlenecks and opening the possibility of more efficient scaling to

larger and larger datasets.

11Tokens are the basic units that LLMs process, but they are not exactly the same as words. A token might be a common word
(”the”), a part of a longer word (”ing” in ”running”), a punctuation mark, or even a space character. Most English words become
1-2 tokens, but uncommon words might be broken into many tokens. This tokenization process affects how models understand
text—for example, ”peanutbutter” (uncommon, multiple tokens) might be processed differently than ”peanut butter” (common, fewer
tokens)—creating subtle effects on model comprehension.
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Fig. 1. The transformer architecture showing the flow of information through the model. Input tokens are embedded into vectors,
processed through multiple layers of attention mechanisms and MLPs within the residual stream, and finally unembedded to produce
output probabilities. The dashed lines represent residual connections that allow information to bypass layers.

The basic transformer architecture consists of an embedding layer which turns the input into

token vectors12, multiple layers of residual blocks which perform the transformations, and an

unembedding layer that produces output probabilities. Each residual block contains an attention

layer—a group of parallel attention heads— followed by a multi-layer perceptron (MLP) layer [7].

The path through the entire model is called the residual stream and serves as the communication

channel that all of the other layers operate on.13 The linear nature of this stream allows different

12These embeddings represent tokens in a high dimensional space where semantic relationships are preserved—similar words
cluster together. During training, the model learns these vectors for each token in its vocabulary (usually 30,000-100,000 tokens),
effectively creating a mathematical representation of language building blocks.

13The residual stream solves the deep learning problem known as the vanishing gradient problem. Notated as: LayerNorm(input
+ Sublayer(input)), this connection creates a direct path for information and gradient flow during training. Solving the vanishing
gradient problem allows unconstrained scaling with respect to information degradation.
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layers to send information to specific subspaces, creating a complex distributed representation

system. Now let us dissect each component’s function and mechanism.14

Let us first look at the attention layers. Before moving into how the mechanisms work, I want

to establish the function so there is a context to understand the mechanisms under. An input

into an LLM is often hundreds to thousands of tokens. These tokens, which for simplicity’s sake

we can consider as single words, inevitably refer to each other. A system that only worked by

sequentially moving through the information in a forwards fashion would get hopelessly confused

on the context of the message. So, models need a mechanism to make all of these tokens talk

to each other and share their context. This is what attention does. An attention layer consists of

many parallel attention heads. The motivation behind this is that each attention head effectively

asks and answers different questions about the tokens15—for example, is this token a noun and, if

so, what adjectives attend to it? Models learn to, speaking at a high level, have each attention head

ask and answer different questions about the input. Each attention head reads information from

the residual stream at one token position and writes it to another, with the model learning which

information to move and where to move it [7]. This enables the model to determine long-ranged

dependencies in the context. As models scale, more sophisticated attention patterns emerge such

as “induction heads,” but those will only be relevant later [8].

MLPs can be thought of as where the model stores its “knowledge.” These layers read the

information off the residual stream as it’s been added onto by attention layers, and essentially

check if they know something about the information. When an MLP reads the information of the

residual stream certain concepts it has learned will be activated, then these concepts are added into

the residual stream to pass through more attention layers and MLPs. A common way to think about

the knowledge stored in MLPs is that every learned concept is attributed to a specific direction

in the high-dimensional space that is in the MLP, known as the linear representation hypothesis

(LRH). However, models have learned to store more concepts than they have directions in their

14The embedding and unembedding layers do not contain any significant function other than converting information into something
the model can understand and back to something humans can understand respectively, so I will not cover their mechanisms. For now,
just know they bookend the more interesting transformation layers.

15For each token, the model computes query (Q), key (K), and value (V) vectors. The attention patterns—determining how much
each token influences others—are calculated as: softmax(QKT/

√
d). These attention patterns are then run through the output-value

circuit to produce the layer output.
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MLPs. This is believed to be achieved by the “superposition hypothesis” [9]. The superposition

hypothesis suggests that models use almost-orthogonal directions to represent more features16 than

there are dimensions, achieving remarkable efficiency through sparse encoding17 of concepts [9].

At risk of anthropomorphizing, I would give the conceptual analogy of attention layers being

equivalent to figuring out “what” someone is saying and MLPs being equivalent to figuring out

what they “mean” by what they’re saying.

IV. BEYOND TURING

While the Turing Test initially provided a compelling operational framework for evaluating

machine intelligence, the field has largely abandoned it as a meaningful benchmark. Modern

state-of-the-art LLMs could all be reasonably expected to pass the test if given the correct system

prompt, yet few researchers would claim this demonstrates human-equivalent understanding.

Nevertheless, the concept of imitation central to Turing’s approach warrants deeper examination.

This is exactly what Éloı̈se Boisseau investigates in her 2024 paper “Imitation and Large

Language Models” [13]. Boisseau distinguishes between “imitative behavior” and “status of

imitation,” where imitative behavior requires an agent with its own independent behavioral

repertoire modifies it to match another agent’s behavior and the status of imitation refers to

outputs that resemble those of another agent [13]. Her paper argues that LLMs engage in neither

imitative behavior—on the grounds that they have no independent behavior to modify—nor

are they themselves imitations of human speakers. Instead, she proposes that LLMs are better

understood as “imitation manufacturing tool”—devices that produce outputs having the status of

imitations of human speech [13].

I agree with the idea that they produce outputs having the status of imitations of human speech;

however, I argue that they do have their own behavior. Yet, the manufactured imitations are merely

a product of this behavior, leaving LLMs as machines whose behavior has the adaptive potential

to create manufactured imitations. While this may seem like a particularly anal distinction to

make, I believe this opens a good opportunity to consider the kind of behavior an LLM may

16The term for a concept represented by the sparse activations of the superposition hypothesis.
17This resembles the idea of compressed sensing in signal processing—recovering high-dimensional sparse signals from lower-

dimensional measurements.
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have, albeit limited. I contend that LLMs—and other AI models that work with data—exhibit

a distinct loss-minimization and reward-maximizing behavior.18 Furthermore, they appear to use

surprisingly complex reasoning techniques to achieve these goals which suggest a kind of problem

solving nature in pursuit of a goal.

The loss-minimization function of AI models is of less interest here since it is a static and con-

sistent factor deep within the algorithms as they perform gradient descent during pre-training. On

the other hand, the recent integration of reinforcement learning from human feedback (RLHF) and

other kinds of RL offer particularly compelling evidence for more genuine behavior. Anthropic’s

research demonstrates that models develop “hidden-goals”19 features directly associated with their

assistant persona [12]. Lindsey et al. discovered through attribution graphs20 that these features

activate specific behavioral patterns whenever the model is prompted for assistance, guiding the

response to align with the reward signals it was trained on such as helpfulness and harmlessness.

Conversely, when certain user inputs activate safety-relevant features, the model engages specific

inhibitory circuits meant to discourage and prevent harmful outputs, another product of RLHF

[12]. Particularly revealing is the discovery of “default” circuits that cause models to decline

providing a response unless a sufficient number of known features are activated and inhibit the

circuit. These default behaviors appear to have emerged as an efficiency behavior to effectively

fulfill its RL training goals.

While not empirically verified, I am inclined to offer a charitable account of behavior to LLMs

and other AI models that they have a kind of quasi-behavior with enough sophistication to warrant

preliminary considerations. If we accept this charity, then it leaves LLMs behavioral status as

systems with their own behavior whose outputs happen to resemble human language—not because

they are imitating humans, but because their reward-maximization behavior has been shaped to

18During pre-training, gradients of the loss function are computed by an algorithm known as back propagation which uses the chain
rule to propagate error signals throughout the network. Gradient descent is then applied to adjust these parameters in the direction
of the steepest loss decrease. When applied iteratively the model “learns” the information by finding local-minima.

19The development of ”hidden-goals” features emerges through complex reinforcement learning dynamics rather than explicit
programming. These features represent learned abstractions over rewarded behaviors rather than goal representations in the human
sense. Mechanistic interpretability research shows these features form through sensitivity to positive gradient updates during RLHF
training, creating activation patterns that maximize expected reward.

20Attribution graphs represent a methodological advance beyond basic circuit analysis by revealing causal relationships between
learned features rather than just individual neurons. These techniques combine sparse autoencoders with causal intervention methods
to isolate feature-to-feature influences. These techniques currently capture only a subset of model computation, particularly missing
dynamics from attention mechanisms which may be crucial for understanding higher-order reasoning.
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generate such outputs.

V. BEYOND SEARLE

Searle’s CRA presents the most direct challenge to claims about LLM understanding through

its assertion of an insurmountable gap between syntax and semantics. However, recent advances

in mechanistic interpretability offer compelling evidence that this rigid divide may be insufficient

for explaining the representational capacities of contemporary LLMs. To motivate my later claim

that semantics is more likely than not a product of sufficiently sophisticated syntax, I will give

you a brief history of mechanistic interpretability.

The field of mechanistic interpretability evolved as a response to neural networks becoming

effective “black boxes.” Its goal is to develop techniques that reveal the inner operations of

AI models. Early work by Elhage et al. established a mathematical framework for analyzing

transformer circuits21, identifying how information flows through the residual stream and how

attention heads move information between tokens [7]. This initial research also found the existence

of what the authors called “induction heads”22 [7]. Induction heads—a special kind of attention

head tied to in-context learning—were later validated as having a likely causal link to a model’s

in-context learning abilities due to their matching emergence as a phase change23 [8].

Subsequent research deepened our understanding of MLPs and how semantic knowledge may be

encoded. Using Sparse Auto-Encoders (SAE),24 researchers at Anthropic identified “monoseman-

tic features” that represent specific concepts with relative precision [10]. Building on the discovery

of features, researchers discovered that models represent semantic neighborhoods through geo-

metric organizations of semantically related clusters [?]. For example, researchers found clusters

focused on medical concepts that transitioned from “immunocompromised people” to “specific

21The term for a traceable information path through a model.
22Induction heads mathematically implement pattern completion by having query-key attention matrices learn to detect tokens that

previously appeared in sequence. When token X appears after token A, attention weights W QK(A)·W V(X) form an approximation
where subsequent occurrences of A strongly attend to previous A→X patterns, effectively creating a learned key-value lookup
mechanism that predicts X given the context of A.

23The term for when a model’s performance in a task sees a significant jump when crossing a threshold of parameter size.
24Sparse Auto-Encoders use a two-layer architecture where the first layer maps model activations to a higher-dimensional space

via a learned linear transformation followed by a ReLU nonlinearity, creating “features.” The second layer attempts to reconstruct
the original activations through a linear transformation of these feature activations. This technique reveals features that would be
invisible when only analyzing individual neurons.
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diseases” to “immune response” related features in a semantically coherent topology [?]. These

findings suggest at least a rudimentary form of semantic understanding.

Beyond findings on understanding, researchers also found kinds of reasoning patterns that could

motivate a sense of intentionality. Building on the ideas of circuits—information paths through

a model’s raw components like neurons and attention heads, researchers developed “attribution

graphs” which are effectively circuits of features [12]. This was done by making a “replacement

model” characterized by features25 where circuits could be traced to draw causal relationships

between features. Attribution graphs revealed, among other things, that models seem to be capable

of activating features off of description alone. The symptoms of “preeclampsia” were given as

input—but not the word itself—revealing that the “preeclampsia” feature was activated [12]. This

suggests that the model “represents it internally, apparently using similar internal machinery as

if the word were spelled out explicitly” [12]. This seems to be a kind of mental state (activation

of features) being directed at a state of affair (medical diagnosis), expressing intentionality to

some degree under Searle’s definition.

Most interestingly with respect to Searle’s CRA, researchers found evidence that models

likely hold language-agnostic representations for many concepts. It was found that when solving

multilingual tasks, “the key semantic transformation occurs using the same important nodes26

in every language, despite not sharing any tokens in the input” [12]. This suggests that LLMs

develop abstract, language agnostic conceptual representations similar to Noah Chomsky’s notion

of I-language—a universal linguistic competence underlying surface variations [16]. Further

motivation for this claim was found when researchers noticed that language specific features only

engaged at the final output, while the core computations were performed by the language-agnostic

features in the middle of the model. This suggests a separation between conceptual processing

and linguistic expression similar to Chomsky’s distinction between I-language (internal linguistic

competence) and E-language (external manifestations) [16].

25This is done with the use of Cross-layer Transcoders (CLT) that reconstruct MLP outputs using sparse features. The impact of
attention layers is notably absent in the replacement model.

26Groups of related features that activate on the same concept.
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English: “dog” Spanish: “perro” Japanese: “犬”

Language-Specific Token Embeddings

Language-Agnostic Processing

“Dog Concept” Feature Activation

English Output Spanish Output Japanese Output

I-language
(Internal linguistic

competence)

E-language
(External man-

ifestation)

E-language
(External man-

ifestation)

Fig. 2. The language-agnostic representation model in LLMs. Language-specific tokens for “dog” in multiple languages (English,
Spanish, Japanese) are processed into a shared conceptual representation in the middle layers of the model. This representation is
then translated back into language-specific outputs. This parallel with Chomsky’s distinction between I-language (internal linguistic
competence) and E-language (external manifestation) suggests LLMs develop abstract conceptual understanding independent of
specific languages.

In aggregate, the evidence suggests that semantics—as we commonly understand it—may

be better understood as an emergent property of sufficiently complex syntax and structured

architectures rather than a fundamentally different phenomenon. Furthermore, if we consider

semantic understanding as a spectrum, LLMs demonstrate a meaningful degree of competence

through their abilities to represent related concepts as neighbors, internally represent concepts

without need for direct token referencing, and develop language-agnostic abstractions. These

capabilities challenge Searle’s sharp distinction between syntax and semantics and suggest that

his biological naturalism may grant unwarranted exceptionalism to human cognition.

VI. BEYOND GRICE

Grice’s theory of communicative intention presents a significant challenge for LLMs. The idea

that meaningful communication requires a nesting of intentions—to produce an effect, to have

this intention recognized, and to have this recognition play a causal role in producing the effect—
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seems to demand cognitive capacities beyond what we may expect of LLMs. However, Nuhu

Osman Attah offers a compelling reframing of this requirement that accommodates LLMs in his

recent work on communicative intentions in LLMs [14].

Attah challenges what he calls the “Communicative Intention Argument” against LLM linguistic

competence by identifying its two key premises: that genuine linguistic competence requires

communicative intention, and that LLMs lack mechanisms for entertaining such intentions [14].

He argues this argument fails on two grounds: if we use a strong Gricean definition of com-

municative intention (requiring meta-representational abilities27), the first premise is empirically

untenable as not all human communication requires such complex intentions. If we adopt a more

minimal “control conception” of intention, then LLMs actually do have mechanisms that satisfy

this definition.

This “control conception” defines intentions functionally as “internal states that both track and

control a system’s actions in a way that is responsive to its environment” [14]. Attah notes that

this theory satisfies three important requirements: it’s functional rather than phenomenological,

consistent with cognitive science, and doesn’t presuppose full agency [14]. When it comes to

tracking belief-like states, LLM architecture excels. The final output of an LLM is chosen from

a selection of options each weighted with a relative probability of relevance. At the beginning of

the model, the number of plausible next tokens is huge and is narrowed down through increasing

information into the residual stream through attention mechanisms and MLPs. These selections

are, in effect, the model solving “Many-Many Problems”28 by mapping inputs to appropriate

responses. Under the control conception, LLMs mechanisms qualify as having intentions.

Anthropic’s research on LLM internal representations provides empirical support for Attah’s

theoretical framework. Attribution graph analysis reveals that models contain features specifically

dedicated to representing communicative goals and user intentions [12]. When processing queries,

models activate features that represent not just the semantic content of the input but also the

pragmatic aspects of the communication—for example, features that recognize potentially harmful

27Meta-representational abilities refer to the capacity to represent one’s own and others’ mental states—essentially ”thinking about
thinking.” This includes understanding that others have beliefs different from one’s own (theory of mind), representing one’s own
knowledge states (metacognition), and understanding representations as representations.

28The challenge of explaining how systems select appropriate actions when faced with many possible inputs and many possible
outputs.
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user intentions. These intention-recognition capacities enable the model to respond appropriately

to a wide range of communicative situations.

However, LLMs do exhibit limitations in their intention-recognition capabilities compared to

humans. They operate within a narrower range of communicative contexts—primarily human-

assistant dialogues—and lack the sophisticated theory of mind that enables humans to recognize

multiple, potentially conflicting intentions. As Attah acknowledges, “while denying LLMs possess

the kinds of intentions humans have, [we can] also deny possessing those kinds of intentions is

necessary for linguistic competence” [14]. This leaves open the possibility that communication

might exist on a spectrum rather than as a binary, with LLMs earning a partial communicative

competence.

VII. BEYOND WITTGENSTEIN

While Searle’s CRA presented the most direct challenge to LLMs understanding, Wittgenstein’s

language games present the most difficult framework for LLMs to stand as human-equivalent

language agents. His emphasis on embodied practice and communal agreement appears to disclude

LLMs from genuine language use. However, applying the philosophical analyses by Boisseau

[13], Lyre [2], and Lenci [17] offer potential avenues for partial participation for LLMs.

Boisseau’s analysis of LLMs as “imitation manufacturing tools”29 rather than agents engaged

in imitative behavior addresses a key Wittgensteinian concern [13]. If meaning emerges from use

in social practices, can a system that merely produces imitations of speech participate in language

games? Based on Boisseau’s analysis, I suggest that LLMs occupy a unique position: they don’t

imitate language in the way humans or animals might, but they produce outputs that have the status

of imitation of human language. This creates an ambiguous relationship to language games—

they produce outputs that function within some language games without necessarily participating

in them the same way humans do. While only leaving a narrow opening, this may create the

possibility of participation in a narrow range of language games.

Holger Lyre’s concept of “indirect causal grounding” offers a potential bridge between dis-

embodied LLMs and Wittgenstein’s embodied language practices [2]. Lyre argues that even

29The status of whether they have their own behavior is irrelevant in this section so is not mentioned.
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without direct sensory experience, LLMs develop “world models”—internal representations that

are structurally isomorphic to aspects of the world—through their training on human-generated

text. These representations combined with what Lyre calls “mild social grounding”—where

models learn the rules and patterns of language uses through training on documented human

practices—enable a form of partial participation in language games [2].

However, LLMs’ disembodiment imposes significant limitations on their language game par-

ticipation. Many language games presuppose embodied experience—perceptual discrimination,

physical action, emotional responses—that remain inaccessible to text-only systems. While LLMs

can simulate these experiences textually, this simulation lacks the necessary direct causal ground-

ing. A striking example of LLMs deficiencies in conceptual representations as a product of their

disembodied nature is found in Proietti and Lenci’s study on the part-whole relation in LLMs

[17]. Through behavioral, probabilistic, and representational tests, the paper found that LLMs

had a deficient or incomplete grasp of antisymmetry and the part-whole relation [17]. That is,

they struggled to understand that if x is part of y then y cannot be part of x. Their hypothesis for

this struggle is that some concepts such as the part-whole relation require embodied capabilities

to achieve a complete understanding of.

Overall, these findings suggest that language game participation may be open to LLMs in a

very narrow set—primarily those focused on abstract reasoning, narrative, or formal patterns.

The larger set of language games which require strong kinds of embodied or social abilities are

inaccessible to LLM participation.

VIII. DISCUSSION

Our examination of LLMs through the frameworks of Turing, Searle, Grice, and Wittgenstein

has painted a nuanced picture of LLMs’ linguistic capabilities and status as linguistic agents.

Rather than fitting neatly into any single theoretical framework, LLMs demonstrate a pattern

of partial but significant capacities across multiple dimensions of understanding. The evidence

from interpretability suggests that LLMs possess their own distinct behavioral patterns (contra

Turing’s imitation framework), demonstrate sophisticated semantic representations (challenging

Searle’s syntax-semantics distinction), implement functional communicative intentions (reframing
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Grice’s intentionality requirements), while remaining limited participants in the full spectrum of

Wittgensteinian language games.

This pattern aligns with my thesis that LLMs have mechanically different yet substantive kinds

of semantic understanding and intentionality when viewed as existing on a spectrum, while lacking

generalized intelligence and genuine agency. The key insight emerging from this analysis is that

our philosophical frameworks for understanding and intentionality require refinement to accom-

modate entities whose cognitive architectures differ fundamentally from our own. Understanding

may be better conceptualized as multidimensional rather than binary.

This perspective has significant implications for both AI development and philosophical in-

quiry. For AI research, it encourages the pursuit of architectures optimized for their unique

computational substrate rather than trying to mimic human cognitive processes. For philosophy,

it challenges the anthropocentrism implicit in many theories of language and mind, suggesting

that understanding and intentionality may be realized through multiple architectural patterns and

substrates rather than requiring specific biological implementations.

It is worth noting that humans themselves may not represent the ultimate endpoints of these

multidimensional spectrums for understanding. Our own cognitive capacities almost certainly

occupy intermediate positions, shaped by the specific evolutionary pressures and architectural

constraints of biological neural networks. Future AI developments—particularly multimodal sys-

tems integrating visual, auditory, and other sensory modalities—may extend capabilities along

certain dimensions beyond human capacities, while remaining constrained in others.

While transformers have proven a remarkably effective architecture, alternative approaches—

including neurosymbolic systems that combine affective neural networks with symbolic reasoning

capabilities—may enable new forms of abstraction, inference, and perhaps even forms of agency

beyond transformers’ capabilities. The development of such systems would not necessarily make

them “more human-like” but might create entirely new cognitive profiles with unique combina-

tions of strengths and limitations—pushing us to further expand our conceptual frameworks for

understanding and intelligence.

In conclusion, LLMs present neither mere statistical mimicry nor human-equivalent under-
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standing, but something still interesting—a novel form of semantic processing that shares family

resemblance with human understanding while differing in fundamental ways. This recognition

should challenge us to develop more nuanced, non-anthropocentric accounts of understanding

and intentionality—accounts that recognize the possibility of multiple cognitive architectures

with different but similarly valid forms of semantic competence. By embracing this broader

perspective, we can better appreciate both the remarkable capabilities of current AI systems

and the unique qualities of human cognition, without privileging either as the definitive form

of understanding. This philosophical recalibration will be essential as we navigate a future with

increasingly sophisticated artificial agents participating in our linguistic and cognitive ecosystems.
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